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Abstract  

This study presents a comparative analysis of the Variational Iteration Method (VIM) and the 

Series Expansion Method (SEM) for solving Fredholm Integro-Differential Equations (FIDEs). 

Both methods were applied to an illustrative example, showcasing their effectiveness in addressing 

this class of equations. While SEM provided approximate solutions with acceptable accuracy, VIM 

demonstrated a distinct advantage by delivering exact solutions. The performance of the methods 

was evaluated through numerical experiments, with results presented using graphs and tables for 

clarity. SEM, though straightforward in its approach, exhibited slower convergence and reduced 

precision. On the other hand, VIM, employing correction functionals and Lagrange multipliers, 

consistently achieved high accuracy with minimal computational effort. The findings confirm that 

while both methods are effective, VIM is the more reliable and efficient approach for solving 

FIDEs. Its ability to produce exact solutions highlights its suitability for practical applications in 

mathematics and engineering. 

Keywords: Fredholm integro-differential equations, Variational Iteration method and Series 

Expansion Method 

 

1.  Introduction  

The background of the study of integro-differential equations is rooted in the broader study of 

differential equations and integral equations (Ejes, Nwaoburu & Davies 2024). 

Some important problems in science and engineering can usually be reduced to a system of integral 

and integro-differential equations (Rabbani & Zarali, 2012). Pursuing analytical solutions to 

integro-differential equations represents a formidable yet crucial endeavor in mathematical 

analysis. 

The Variational Iteration Method (VIM) and the Series Expansion Method (SEM) are two powerful 

approaches for solving Fredholm Linear Integro-Differential Equations (FIDEs). VIM utilizes 

iterative correction functionals to refine approximate solutions, offering a simple yet effective 

method that converges rapidly to the exact solution. In contrast, SEM expresses the unknown 

function as an infinite series, where each term is derived to improve the approximation of the 

solution. 
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Several authors have used have Used VIM and SIM in solving integro differential equation. Some 

have also made comparative analysis of different methods in solving integro differential equation. 

For instance, Ejes, Nwaoburu and Davies (2024), made a comparative analysis of the solution to 

Fredholm linear integro differential equations by ADM, MADM and Series Expansion Method, 

their findings indicate that while each method has its strengths, MADM demonstrates superior 

accuracy in most cases, making it a promising tool for handling complex integro-differential 

equations in numerical analysis. Asire and Najmudd (2023), presented a comparative analysis of 

the Adomian Decomposition Method (ADM), the Modified Adomian Decomposition Method 

(MADM), and the Variational Iteration Method (VIM). The primary objective of their research 

was to identify the most effective method between the three methods.  

They said that the Adomian Decomposition Method (ADM), Modified Adomian Decomposition 

Method (MADM), and Variational Iteration Method (VIM) are efficient and effective methods for 

solving a wide range of problems. They said that the main advantage of these methods is that they 

do not require the variables to be discretized. Furthermore, these are unaffected by computation 

round off errors. Furthermore, they concluded that while the Adomian Decomposition Method 

(ADM) involves the computation of an Adomian polynomial, which demands time-intensive 

algebraic calculations, the Variational Iteration Method (VIM) requires only the evaluation of a 

Lagrangian multiplier. Additionally, VIM simplifies the computational process and provides 

solutions more quickly compared to both ADM and the Modified Adomian Decomposition 

Method (MADM). 

Jackreece and Godspower (2017) made a comparison of Taylor Series and Variational Iteration 

method in solution of non- linear integro-differential equation. They observed that the Taylor 

Series methods seem to be more effective as the absolute errors are less than those from Variational 

iterative method. 

Batiha, Noorani and Hashim (2006), use VIM to solve multi species Lotka-volterra equation. In 

comparisons with the Adomian decomposition and the fourth-order Runge–Kutta methods, they 

concluded that the variational iteration method is a powerful method for nonlinear equations.   

 

2 Methodology 

 

Let us consider the linear fredholmn integro differential equation  

𝑢𝑛(𝑥) = 𝑓(𝑥) + λ ∫  
𝑏

𝑎
 𝐾(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡             (2.1) 
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With   𝑢𝑚(0) = 𝛾𝑚, 0 ≤ 𝑚 ≤ (𝑛 − 1) 𝑡ℎ𝑎𝑡 𝑖𝑠 𝑢(0) = 𝛾1,
𝑑𝑢(0)

𝑑𝑥
= 𝛾2,

𝑑2𝑢(0)

𝑑𝑥2 = 𝑏3,
𝑑3𝑢(0)

𝑑𝑥3 =

𝛾4 … … … … … . .
𝑑𝑛−1𝑢(0)

𝑑𝑥𝑛−1 = 𝛾n−1   

In this context 𝛾1, 𝛾2, 𝛾3, 𝛾3, … … … … . . 𝛾n−1 denotes real constants representing the initial 

condition of 𝑢(𝑥) and its derivatives at 0, while 𝑢𝑛(𝑥) which is equivalent to 
𝑑𝑛𝑢

𝑑𝑥𝑛 denotes the nth 

derivative of the unknown function 𝑢(𝑥) and 𝑓(𝑥) is a known function. These derivatives appear 

both inside and outside the integral sign. The integral function's kernel, denoted as 𝐾(𝑥, 𝑡), and the 

function 𝑓(𝑥) are specified as real-valued functions while u(t) represents a linear function of it. 

The methods being discussed include the Variational Iteration Method and the Series Expansion 

Method, each of which has contributed to the progress in solving these types of equations. The 

following sections will provide a detailed explanation of each method. 

2.1 Variational Iteration Method 

This method is employed to solve a wide range of both linear and nonlinear equations, including 

Fredholm integro-differential equations and linear and nonlinear Volterra integro-differential 

equations, providing rapidly converging approximations to the exact solutions. The initial 

approximation can be chosen arbitrarily and may include unknowns that are determined using the 

initial conditions.  

Let us consider the equation 

𝐿𝑢(𝑥) + 𝑁𝑢(𝑥) = 𝑓~(𝑥)                                                                                          (2.2) 

Where 𝐿, 𝑁 are linear and nonlinear operators respectively and 𝑓~(𝑥) is a non-homogeneous term. 

The correction functional for the above equation is given as: 

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + ∫ 𝜁(𝑟)
𝑥

0
(𝐿𝑢𝑛(𝑟) + 𝑁𝑢𝑛(𝑟) − 𝑓~(𝑟))𝑑𝑟               

(2.3) 

Where 𝜁 is the Lagrange’s multiplier which can be a constant or function and 𝑢𝑛 is a restricted 

value which implies that it behaves as a constant, hence Δ𝑢𝑛 = 0 where Δ is a variational 

derivative. 

The following steps outline the application of the Variational Iteration Method: 

First, the Lagrange multiplier 𝜁(𝑟) is determined optimally. The result is then substituted into the 

correction functional, omitting the restriction. By taking the variation of the correction functional 

with respect to the independent variation 𝑢𝑛, we obtain 

Δ𝑢𝑛+1

Δ𝑢𝑛
= 1 +

Δ

Δ𝑢𝑛
(∫ 𝜁(𝑟)

𝑥

0
(𝐿𝑢𝑛(𝑟) + 𝑁𝑢𝑛(𝑟) − 𝑓~(𝑟)𝑑𝑟)                                  (2.4) 

Which is reduced for Fredholm linear integro differential equation 
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to  

Δ𝑢𝑛+1 = Δ𝑢𝑛 + ∆(∫ 𝜁(𝑟)
𝑥

0
(𝐿𝑢𝑛(𝑟)𝑑𝑟)       (2.5) 

Appling integration by part to get the value of the Lagrange multiplier 𝜁(𝑟). We get  

First order  

∫ 𝜁(𝑟)
𝑥

0
𝑢′𝑛(𝑟)𝑑𝑟 = 𝜁(𝑟)𝑢𝑛(𝑟) − ∫ 𝜁′(𝑟)

𝑥

0
𝑢𝑛(𝑟)𝑑𝑟      (2.6) 

Second order 

∫ 𝜁(𝑟)
𝑥

0
𝑢′′𝑛(𝑟)𝑑𝑟 = 𝜁(𝑟)𝑢′𝑛(𝑟) − 𝜁′(𝑟)𝑢𝑛(𝑟) ∫ 𝜁′′(𝑟)

𝑥

0
𝑢𝑛(𝑟)𝑑𝑟    (2.7) 

Third order 

∫ 𝜁(𝑟)
𝑥

0
𝑢′′′𝑛(𝑟)𝑑𝑟 = 𝜁(𝑟)𝑢′′𝑛(𝑟) − 𝜁′(𝑟)𝑢′

𝑛(𝑟) + 𝜁′′(𝑟)𝑢𝑛 ∫ 𝜁′′′(𝑟)
𝑥

0
𝑢𝑛(𝑟)𝑑𝑟  (2.5) 

Forth order  

∫ 𝜁(𝑟)
𝑥

0
𝑢𝑖𝑣

𝑛(𝑟)𝑑𝑟 = 𝜁(𝑟)𝑢′′′𝑛(𝑟) − 𝜁′(𝑟)𝑢′′𝑛(𝑟) + 𝜁′′(𝑟)𝑢′
𝑛 − 𝜁′′′(𝑟)𝑢𝑛(𝑟) +

∫ 𝜁′′′(𝑟)
𝑥

0
𝑢𝑛(𝑟)𝑑𝑟           (2.6) 

And so on. The identities are all gotten via integration by part. 

The variational principle requires that the correction functional satisfies   

Δ𝑢𝑛+1 = 𝑢𝑛+1 − 𝑢𝑛 = 0.         (2.7) 

This implies that  

for first order 

𝜁(𝑟) = −1  

for second order 

𝜁(𝑟) = 𝑟 − 𝑥  

for third order 

𝜁(𝑟) = −
(𝑟−𝑥)2

2
  

For nth order, 

𝜁(𝑟) =
(−1)𝑛(𝑟−𝑥)𝑛−1

(𝑛−1)!
.          (2.8) 

With the Lagrange multiplier determined, next we obtain the successive approximation 𝑢𝑛+1, 𝑛 ≥
1, of the solution 𝑢(𝑥), which will be gotten using selective functional 𝑢𝑜(𝑥). 
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𝑢𝑜(𝑥) is selected the initial conditions 

𝑢𝑜(𝑥) = 𝑢(0) for order one 

𝑢𝑜(𝑥) = 𝑢(0) + 𝑥𝑢′(0) for order two 

𝑢𝑜(𝑥) = 𝑢(0) + 𝑥𝑢′(0) +
𝑥2

2!
𝑢′′(0) for order three 

𝑢𝑜(𝑥) = 𝑢(0) + 𝑥𝑢′(0) +
𝑥2

2!
𝑢′′(0) +

𝑥3

3!
𝑢′′′(0) for order four 

𝑢𝑜(𝑥) = 𝑢(0) + 𝑥𝑢′(0) +
𝑥2

2!
𝑢′′(0) +

𝑥3

3!
𝑢′′′(0) + ⋯ +

𝑥𝑛−1

(𝑛−1)!
𝑢𝑛−1(0) for order n  (2.9) 

Hence 𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛(𝑥)         (2.10) 

2.2 Series Expansion Method 

The Taylor series method represents the solution as a power series expansion. It involves 

expanding the unknown function and the kernel function in Taylor series about a given point and 

substituting these expansions into the integral equation. By equating coefficients of like powers of 

𝑥, one can obtain a sequence of equations for the coefficients of the series expansion, which can 

then be solved to approximate the solution (Ejes, Nwaoburu & Davies 2024). 

The Series Solution Method is fundamentally based on the use of Taylor series expansions for 

analytical functions. It is crucial to note that the applicability of Taylor series requires the existence 

of derivatives of all orders, necessitating their computation. Additionally, a Taylor series centered 

at any point b within its domain converges to f(x) within a neighborhood around b 

𝑢(𝑥) = ∑
𝑢𝑛(𝑎)

𝑛!
(𝑥 − 𝑏)𝑛∞

𝑛=0                                (2.11)  

When x = 0, equation (3.29) is reduced to 

 𝑢(𝑥) = ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0               (2.12) 

Or 𝑢(𝑥) = 𝑎0+𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + 𝑎4𝑥4 … … … … … … … … … … …              (2.13)  

It is normal to integrate both sides of equation (2.1). Suppose 𝐿−1 is an n – fold integration operator 

𝐿−1(𝑢𝑛(𝑥)) = 𝐿−1(𝑓(𝑥)) + 𝐿−1(𝜆 ∫  
𝑏

𝑎
 𝐾(𝑥, 𝑡)𝑢(𝑡))𝑑𝑡)           (2.14)   

  

𝑢(𝑥) = 𝛾0 + 𝛾1𝑥 +
1

2!
𝛾2𝑥2 +

1

3!
𝛾3𝑥3 + ⋯ +

1

(𝑛−1)!
𝛾𝑛−1𝑥𝑥−1 + 𝐿−1(𝑓(𝑥))  +

𝐿−1(𝜆(∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡)
𝑏

𝑎
)                                                (2.15) 

Equation (2.15) can be expressed as 

𝑢(𝑥) = ∑
1

𝑙!
𝛾𝑙𝑥

𝑙𝑛−1
𝑙=0 + 𝐿−1(𝑓(𝑥)) + 𝐿−1(𝜆 ∫  

𝑏

𝑎
 𝐾(𝑥, 𝑡)𝑢(𝑡))𝑑𝑡)                      (2.16) 
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Without loss of generality, if 

𝐾(𝑥, 𝑡) = 𝑞(𝑥)𝑤(𝑡)           (2.17) 

Equation (2.17) implies that the kernel is separable, 

Equation 2.4 can be expressed as 

𝑢(𝑥) = ∑
1

𝑙!
𝛾𝑙𝑥

𝑙𝑛−1
𝑙=0 + ℎ(𝑥) + 𝐿−1𝑞(𝑥)(𝜆 ∫  

𝑏

𝑎
 𝑤(𝑡)𝑢(𝑡))𝑑𝑡)                               (2.18)    

∑
1

𝑙!
𝛾𝑙𝑥

𝑙𝑛−1
𝑙=0  is gotten from the n-fold integrator operation   

From (2.18) 

𝑢(𝑥) = ∑
1

𝑙!
𝛾𝑙𝑥

𝑙𝑛−1
𝑙=0 + ℎ(𝑥) + 𝐿−1𝑞(𝑥)(𝜆 ∫  

𝑏

𝑎
 𝑤(𝑡)𝑢(𝑡))𝑑𝑡)                               

Substituting equation (2.12) into equation (2.18), we get  

∑ 𝑎𝑛𝑥𝑛∞
𝑛=0 = ∑

1

𝑙!
𝛾𝑙𝑥

𝑙𝑛−1
𝑙=0 + ℎ(𝑥) + 𝐿−1𝑞(𝑥)(𝜆 ∫  

𝑏

𝑎
 𝑤(𝑡) ∑ 𝑎𝑛𝑥𝑛∞

𝑛=0 )𝑑𝑡 )     (2.19)      

If ℎ(𝑥) and 𝐿−1𝑞(𝑥) comprises elementary functions like exponential functions, trigonometric 

functions, etc., we should employ Taylor expansions for the functions contributing to the function. 

Now, equating coefficients of like powers of 𝑥 on both sides, we obtain a system of equations for 

the coefficients 𝑎𝑛. Solving this system will give us the coefficients and hence the Taylor series 

solution for equation.  

2.3 Solved Example 

Example 2.3.1: Consider the linear Fredholm integro-differential equation: 𝑢′(𝑥) = 𝑒𝑥 − 𝑥 +

𝑥𝑒𝑥 + ∫
0

1
 𝑥𝑢(𝑡)𝑑𝑡, with the initial condition 𝑢(0) = 0, and the exact solution is  

𝑢(𝑥) = 𝑥𝑒𝑥.(Asiya & Najmuddin, 2023). 

Variational Iteration Method 

From equation 2.3, the correction functional which is  

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + ∫ 𝜁(𝑟)
𝑥

0
(𝐿𝑢𝑛(𝑟) + 𝑁𝑢𝑛(𝑟) − 𝑓~(𝑟))𝑑𝑟  can be expressed as  

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + ∫ 𝜁(𝑟)
𝑥

0

(𝑢′
𝑛(𝑟) − 𝑒𝑟 + 𝑟 − 𝑟𝑒𝑟 − ∫ 𝑟𝑢𝑛(𝑡)𝑑𝑡

1

0

)𝑑𝑟 

Let 𝑢0(𝑥) = 𝑢(0) = 0 

When 𝑛 = 0 

about:blank


 

 

International Journal of Applied Science and Mathematical Theory E- ISSN 2489-009X  

P-ISSN 2695-1908, Vol. 11 No. 1 2025 www.iiardjournals.org Online Version 

 

 

 
 

 IIARD – International Institute of Academic Research and Development 
 

Page 40 

𝑢1(𝑥) = 𝑢0(𝑥) + ∫ 𝜁(𝑟)
𝑥

0

(𝑢′
0(𝑟) − 𝑒𝑟 + 𝑟 − 𝑟𝑒𝑟 − ∫ 𝑟𝑢0(𝑡)𝑑𝑡

1

0

)𝑑𝑟 

 

𝜁(𝑟) = −1 since 𝐿 =
𝑑

𝑑𝑥
 

Putting 𝑢0(𝑥) = 0 and  𝜁(𝑟) = −1 into the correctional functional 

𝑢1(𝑥) = − (∫ (0
𝑥

0

− 𝑒𝑟 + 𝑟 − 𝑟𝑒𝑟 − ∫ 𝑟(0)𝑑𝑡
1

0

)) 𝑑𝑟 

𝑢1(𝑥) = − (∫ (
𝑥

0

− 𝑒𝑟 + 𝑟 − 𝑟𝑒𝑟) 𝑑𝑟 = (∫ (
𝑥

0

𝑒𝑟 − 𝑟 + 𝑟𝑒𝑟) 𝑑𝑟 

𝑢1(𝑥) = |
𝑥
0

[𝑟𝑒𝑟 −
𝑟2

2
] = 𝑥𝑒𝑥 −

𝑥2

2
  

𝑢1(𝑥) = 𝑥𝑒𝑥 −
𝑥2

2
 

For 𝑢2(𝑥) 

 

𝑢2(𝑥) = 𝑢1(𝑥) − ∫ (
𝑥

0

𝑢′
1(𝑟) − 𝑒𝑟 + 𝑟 − 𝑟𝑒𝑟 − ∫ 𝑟𝑢1(𝑡)𝑑𝑡

1

0

)𝑑𝑟 

𝑢′
1(𝑟) = 𝑒𝑟 − 𝑟 + 𝑟𝑒𝑟 

∫ 𝑟𝑢1(𝑡)𝑑𝑡
1

0

=
5

6
𝑟 

So, 𝑢2(𝑥) = 𝑥𝑒𝑥 −
𝑥2

12
 

𝑢3(𝑥) = 𝑢2(𝑥) − ∫ (
𝑥

0

𝑢′
2(𝑟) − 𝑒𝑟 + 𝑟 − 𝑟𝑒𝑟 − ∫ 𝑟𝑢2(𝑡)𝑑𝑡

1

0

)𝑑𝑟 

𝑢′
2(𝑟) = 𝑒𝑟 −

𝑟

6
+ 𝑟𝑒𝑟 

∫ 𝑟𝑢2(𝑡)𝑑𝑡
1

0

=
35

36
𝑟 
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So, 𝑢3(𝑥) = 𝑥𝑒𝑥 −
𝑥2

72
 

Similarly, 𝑢4(𝑥) = 𝑥𝑒𝑥 −
𝑥2

432
 

𝑢5(𝑥) = 𝑥𝑒𝑥 −
𝑥2

2592
 

 

Observing the pattern, 𝑢𝑛(𝑥) = 𝑥𝑒𝑥 −
𝑥2

2(6)𝑛−1
 

𝑢(𝑥) = lim
𝑛→∞

𝑢𝑛(𝑥) = 𝑥𝑒𝑥 as −
𝑥2

2(6)𝑛−1
→ 0 

Hence, 𝑢(𝑥) = 𝑥𝑒𝑥 which is the exact solution 

Series Expansion Method 

Using inverse operator 𝐿−1 = ∫(.)𝑑𝑥 on example 2.3.1 

We get 𝐿−1(𝑢′(𝑥)) = 𝐿−1 (𝑒𝑥) − 𝐿−1(𝑥) + 𝐿−1(𝑥𝑒𝑥) + 𝐿−1(x∫
0

1
 𝑢(𝑡)𝑑𝑡) 

∫ 𝑢′(𝑥)𝑑𝑥 = ∫ 𝑒𝑥𝑑𝑥 + ∫ 𝑥𝑒𝑥𝑑𝑥 + ∫
0

1
 𝑢(𝑡)𝑑𝑡) 

𝑢(𝑥) = 𝑒𝑥 −
𝑥2

2
+ 𝑥𝑒𝑥 − 𝑒𝑥 +

𝑥2

2
∫ 𝑢(𝑡)𝑑𝑡

1

0

+ 𝑐 

Where c is the constant of integration. Using the initial condition 𝑢(0) = 0 

𝑐 = 0 

We get 

𝑢(𝑥) = 𝑥𝑒𝑥 −
𝑥2

2
+

𝑥2

2
∫ 𝑢(𝑡)𝑑𝑡

1

0
.  

Let 𝑢(𝑥) = ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0  

𝑢(𝑥) = 𝑥𝑒𝑥 −
𝑥2

2
+

𝑥2

2
∫ 𝑢(𝑡)𝑑𝑡

1

0
. Can be written as 

∑ 𝑎𝑛𝑥𝑛∞
𝑛=0 = 𝑥𝑒𝑥 −

𝑥2

2
+

𝑥2

2
∫ ∑ 𝑎𝑛𝑡𝑛∞

𝑛=0 𝑑𝑡
1

0
      

Recall that 𝑒𝑥 = ∑
𝑥𝑛

𝑛!
∞
𝑛=0           
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On substitution,  ∑ 𝑎𝑛𝑥𝑛∞
𝑛=0 = 𝑥 ∑

𝑥𝑛

𝑛!
∞
𝑛=0 −

𝑥2

2
+

𝑥2

2
∫ ∑ 𝑎𝑛𝑡𝑛∞

𝑛=0 𝑑𝑡
1

0
     

 

= ∑
𝑥𝑛+1

𝑛!

∞

𝑛=0

−
𝑥2

2
+

𝑥2

2
∫ ∑ 𝑎𝑛𝑡𝑛

∞

𝑛=0

𝑑𝑡
1

0

 

= ∑
𝑥𝑛+1

𝑛!

∞

𝑛=0

−
𝑥2

2
+

𝑥2

2
⌊∑ 𝑎𝑛

𝑡𝑛+1

𝑛 + 1

∞

𝑛=0

⌋
1
0

 

∑ 𝑎𝑛𝑥𝑛∞
𝑛=0 = ∑

𝑥𝑛+1

𝑛!
∞
𝑛=0 −

𝑥2

2
+

𝑥2

2
∑

𝑎𝑛

𝑛+1
∞
𝑛=0          (ii)  

Equation (ii) can be written as  

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ = (𝑥 + 𝑥2 +
𝑥3

2!
+

𝑥4

3!
… ) −

𝑥2

2
+

𝑥2

2
(𝑎0 +

𝑎1

2
+

𝑎2

3
+ ⋯ ) 

Comparing co-efficient 

𝑎0 = 0 

𝑎1 = 1 

𝑎3 =
1

2!
=

1

2
 

𝑎4 =
1

3!
=

1

6
 

𝑎5 =
1

4!
=

1

24
 

Let’s calculate an approximate value for 𝑎2 

𝑎2 ≈ 1 −
1

2
+

1

2
(𝑎0 +

𝑎1

2
+

𝑎2

3
+

𝑎3

4
+

𝑎4

5
… ) 

𝑎2 ≈ 1 −
1

2
+

1

2
(0 +

1

2
+

𝑎2

3
+

(
1
2)

4
+

(
1
6)

5
+

(
1

24)

6
… ) 

𝑎2 ≈ 1 −
1

2
+

1

2
(0 +

1

2
+

𝑎2

3
+

1

8
+

1

30
+

1

144
… ) 

𝑎2 −
𝑎2

6
≈ 1 −

1

2
+

1

2
(0 +

1

2
+

1

8
+

1

30
+

1

144
… ) 
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𝑎2 −
𝑎2

3
≈ 0.8326 

On evaluation, 𝑎2 ≈ 0.999 

Hence the series becomes 𝑢(𝑥) ≈ 𝑥 +0.999
𝑥2

2
+

𝑥3

2
+

𝑥4

6
+

𝑥5

24
… 

3 Result 

Table 3.1: Exact and Approximate Solution by ADM, MADM and SEM For Example 1with step 

size 0.01 

x EXACT VIM SEM |Ex-VIM| |Ex-SEM| 

0.01 0.010100502 0.010100502 0.010050452 0 5.005E-05 

0.02 0.020404027 0.020404027 0.020203827 0 0.000200199 

0.03 0.030913636 0.030913636 0.03046319 0 0.000450446 

0.04 0.041632431 0.041632431 0.040831647 0 0.000800784 

0.05 0.052563555 0.052563555 0.051312354 0 0.001251201 

0.06 0.063710193 0.063710193 0.061908516 0 0.001801677 

0.07 0.075075573 0.075075573 0.072623388 0 0.002452185 

0.08 0.086662965 0.086662965 0.083460282 0 0.003202683 

0.09 0.098475686 0.098475686 0.094422566 0 0.00405312 

0.1 0.110517092 0.110517092 0.105513667 0 0.005003425 

0.11 0.122790588 0.122790588 0.116737073 0 0.006053515 

0.12 0.135299622 0.135299622 0.128096337 0 0.007203286 

0.13 0.14804769 0.14804769 0.139595078 0 0.008452612 

0.14 0.161038332 0.161038332 0.151236983 0 0.009801349 

0.15 0.174275136 0.174275136 0.163025813 0 0.011249324 

0.16 0.187761739 0.187761739 0.174965398 0 0.012796341 

0.17 0.201501825 0.201501825 0.187059649 0 0.014442176 

0.18 0.215499125 0.215499125 0.199312551 0 0.016186574 

0.19 0.229757424 0.229757424 0.211728174 0 0.01802925 

0.2 0.244280552 0.244280552 0.224310667 0 0.019969885 
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Figure 3.1. Exact and Approximate Solution by VIM and SEM with step size 0.01 
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Table 3.2: Exact and Approximate Solution by ADM, MADM and SEM For Example 1with step 

size 0.05 

 

x EXACT VIM SEM |Ex-VIM| |Ex-SEM| 

0.05 0.052563555 0.052563555 0.051312354 0 0.001251201 

0.1 0.110517092 0.110517092 0.105513667 0 0.005003425 

0.15 0.174275136 0.174275136 0.163025813 0 0.011249324 

0.2 0.244280552 0.244280552 0.224310667 0 0.019969885 

0.25 0.321006354 0.321006354 0.289877604 0 0.03112875 

0.3 0.404957642 0.404957642 0.360291 0 0.044666642 

0.35 0.496673642 0.496673642 0.436177729 0 0.060495913 

0.4 0.596729879 0.596729879 0.518234667 0 0.078495212 

0.45 0.705740483 0.705740483 0.607236188 0 0.098504296 

0.5 0.824360635 0.824360635 0.704041667 0 0.120318969 

0.55 0.95328916 0.95328916 0.809602979 0 0.143686181 

0.6 1.09327128 1.09327128 0.924972 0 0.16829928 

0.65 1.245101539 1.245101539 1.051308104 0 0.193793435 

0.7 1.409626895 1.409626895 1.189885667 0 0.219741229 

0.75 1.587750012 1.587750012 1.342101563 0 0.24564845 

0.8 1.780432743 1.780432743 1.509482667 0 0.270950076 

0.85 1.988699824 1.988699824 1.693693354 0 0.29500647 

0.9 2.2136428 2.2136428 1.896543 0 0.3170998 

0.95 2.456424176 2.456424176 2.119993479 0 0.336430697 

1 2.718281828 2.718281828 2.366166667 0 0.352115162 
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Figure 3.2. Exact and Approximate Solution by VIM and SEM with step size 0.05 
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Figure 3.3: Absolute error with step size 0.01 

 

Figure 3.4. Absolute error with step size 0.05 
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Table 3.3. Root Mean Square Error with step size 0.01 

 

Root Mean Square Error (RMSE)  

MADM 0 

SEM 0.00951404 

 

 

Table 3.4. Root Mean Square Error with step size 0.05 

 

 

 

 

 

4 Discussion 

In this comparative analysis, we evaluated the solutions to Fredholm linear integro-differential 

equations using two different methods: the Variational Iteration Method (VIM) and the Series 

Expansion Method (SEM). The effectiveness of each method was assessed based on numerical 

accuracy, convergence rate, computational efficiency, and ease of implementation. Notably, the 

VIM is a highly effective approach, providing the exact solution, which makes it a superior method 

for solving these equations. 

The VIM is a robust analytical method that constructs correction functionals using Lagrange 

multipliers, iteratively refining approximations to yield the exact solution. This method efficiently 

handles Fredholm integro-differential equations by iteratively improving the approximation 

without requiring complex transformations or restrictive assumptions. The accuracy and 

convergence speed of VIM surpass those of SEM, making it an ideal approach for solving such 

problems. 

The Series Expansion Method involves expressing the solution as a series and determining the 

coefficients through various techniques, such as power series or Fourier series. However, 

compared to VIM, the convergence rate of SEM is slower. SEM also requires careful selection of 

the series type and precise computation of coefficients, making its implementation more 

challenging. While SEM can provide approximate solutions, its effectiveness diminishes for 

problems where high accuracy is required. 

When comparing these methods, the results demonstrate the strengths and effectiveness of both 

techniques. VIM, however, consistently provides more precise approximations and often yields 

exact solutions. When applied to Fredholm linear integro-differential equations with separable 

Root Mean Square Error (RMSE)  

VIM 0 

SEM 0.240693898 
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kernels, the outcomes obtained through VIM and SEM are comparable in structure, but VIM's 

solutions exhibit superior precision and computational efficiency. Moreover, VIM achieves rapid 

convergence with fewer computational steps, whereas SEM requires more iterations to attain 

similar accuracy. 

Tables 3.1–3.4 illustrate the comparative results, absolute errors, and root mean square errors 

(RMSE) of VIM and SEM in relation to exact solutions. The error analyses confirm that VIM 

outperforms SEM in terms of accuracy and convergence speed. Additionally, statistical 

assessments highlight that VIM achieves higher precision more rapidly than SEM. Furthermore, 

when the step size was increased from 0.01 to 0.05, SEM exhibited a tendency to deviate more 

from the exact solution and it still lagged behind VIM in terms of accuracy and efficiency. The 

RMSE table also indicates that VIM has zero error compared to SEM 

The visual representations in Figures 3.1 to 3.4 complement these findings, providing a graphical 

overview of the analysis and reinforcing the superiority of VIM over SEM in solving Fredholm 

linear integro-differential equations. 

5.  Conclusion 

The Variational Iteration Method (VIM) has proven to be a superior approach for solving Fredholm 

linear integro-differential equations, consistently delivering exact solutions with high accuracy and 

efficiency. Its rapid convergence and minimal computational effort make it an optimal choice 

compared to the Series Expansion Method (SEM), which, while useful, exhibits slower 

convergence and greater complexity in implementation. The comparative analysis demonstrated 

that VIM not only provides more precise approximations but also requires fewer computational 

steps, reinforcing its effectiveness. The numerical results, graphical representations, and statistical 

evaluations confirm VIM’s dominance in solving these equations. Consequently, for researchers 

and practitioners seeking an efficient and accurate method, VIM stands as the preferred approach. 
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